Files
permit-api/src/fileValidation/ai.ts
2025-09-09 10:39:21 +05:30

143 lines
3.9 KiB
TypeScript

import OpenAI from "openai";
import fsp from "fs/promises";
import { PdfReader } from "pdfreader";
const openaiClient = new OpenAI({
apiKey: process.env.OPENAI_API_KEY,
});
async function queryChatGPT(prompt: string) {
let res = await openaiClient.chat.completions.create({
model: "gpt-4o",
messages: [
{
role: "system",
content: prompt,
},
],
response_format: { type: "json_object" },
});
return JSON.parse(res.choices[0].message.content);
}
async function parseBufferAsync(buffer: Buffer): Promise<string> {
let parsedData = "";
return new Promise((resolve, reject) => {
new PdfReader().parseBuffer(buffer, (error, item) => {
if (error) return reject(error);
if (!item) return resolve(parsedData);
if (item.text) parsedData += item.text;
});
});
}
export default async function generateNote(
folderPath: string
): Promise<string> {
let energyData = {};
let checklistData = {};
let energyDataFlag = false;
let checklistDataFlag = false;
let energyFilePath = "";
let checklistFilePath = "";
const files = await fsp.readdir(folderPath);
for (const file of files) {
const input = await fsp.readFile(folderPath + `/${file}`);
const pdfData = await parseBufferAsync(input);
if (
Object.keys(checklistData).length == 0 &&
pdfData.toLowerCase().includes("general contractors")
) {
const prompt = `
Extract the following fields and contractor info from the given data and return the response in JSON.
Fields: ["Site Address", "Lot Number", "Estimated Construction Cost", "Total Square Footage", "A/C Square Footage", "Number of Bedrooms", "Number of Bathrooms", "Construction Type", "Number of Stories", "Height", "General Contractors License", "Mechanical Contractors License", "Electrical Contractors License", "Plumbing Contractors License", "Roofing Contractors License", "Concrete/Mason Contractors License", "Confirm the following"]
Data: ${pdfData}
`;
checklistDataFlag = true;
checklistFilePath = file;
checklistData = await queryChatGPT(prompt);
}
if (
Object.keys(energyData).length == 0 &&
pdfData.toLowerCase().includes("energy efficiency")
) {
const prompt = `
Extract the following fields form the given data and return the response in JSON.
Fields: [Project Name, address, county]
Data: ${pdfData}
`;
energyDataFlag = true;
energyFilePath = file;
energyData = await queryChatGPT(prompt);
}
}
const addressCheck = {};
if (checklistDataFlag && Object.keys(checklistData).length > 0) {
for (const file of files) {
if (file == checklistFilePath) continue;
const input = await fsp.readFile(folderPath + `${file}`);
const pdfData = await parseBufferAsync(input);
const prompt = `
Check if the address in the data given below matches this ${checklistData["Site Address"]}. Return the response in JSON with schema {match: Boolean}.
Data: ${pdfData}
`;
const { match } = await queryChatGPT(prompt);
addressCheck[file] = match;
}
}
let note = "";
if (!energyDataFlag) {
note += "Energy Efficiency document not found.\n";
}
if (!checklistDataFlag) {
note += `Checklist document not found.\n\n`;
}
let filesList = "";
for (const file in addressCheck) {
if (!addressCheck[file]) {
filesList += file.split("/").pop() + "\n";
}
}
if (filesList != "") {
note +=
"Below files don't have address or the address doesn't match with the address in checklist\n\n";
note += filesList;
note += "\n";
}
if (energyDataFlag || checklistDataFlag) {
note += "\nExtracted Data:\n";
}
if (Object.keys(energyData).length > 0) {
note += `\n${JSON.stringify(energyData, null, 2)}\n`;
}
if (Object.keys(checklistData).length > 0) {
note += `\n${JSON.stringify(checklistData, null, 2)}\n`;
}
return note;
}